
Jack Dongarra, David A. Bader, Jakub Kurzak

Scientific Computing with
Multicore and
Accelerators

2

List of Figures

1.1 7- and 27-point Stencils . 3
1.2 Roofline-based Performance Predictions 10
1.3 Problem Decomposition . 13
1.4 Common Subexpression Elimination 17
1.5 7-point Stencil Performance 22
1.6 27-point Stencil Performance 23
1.7 Architectural Performance Comparison 29
1.8 Architectural Energy Efficiency Comparison 29

i

ii

List of Tables

1.1 Architectural Descriptions . 6
1.2 Stencil Characteristics . 8
1.3 Optimizations Employed . 18

iii

iv

Contents

1 Auto-tuning Stencil Computations on Multicore and Accel-
erators 1
Kaushik Datta, Samuel Williams, Vasily Volkov, Jonathan Carter, Leonid

Oliker, John Shalf, and Katherine Yelick
1.1 Introduction . 2
1.2 Stencil Overview . 3
1.3 Experimental Testbed . 4
1.4 Performance Expectation . 5

1.4.1 Stencil Characteristics 5
1.4.2 A Brief Introduction to the Roofline Model 7
1.4.3 Roofline Model-based Performance Expectations . . . 9

1.5 Stencil Optimizations . 12
1.5.1 Parallelization and Problem Decomposition 13
1.5.2 Data Allocation . 14
1.5.3 Bandwidth Optimizations 15
1.5.4 In-core Optimizations 16
1.5.5 Algorithmic Transformations 17

1.6 Auto-Tuning Methodology 18
1.6.1 Architecture-Specific Exceptions 19

1.7 Results and Analysis . 21
1.7.1 Nehalem Performance 21
1.7.2 Barcelona Performance 24
1.7.3 Clovertown Performance 25
1.7.4 Blue Gene/P Performance 25
1.7.5 Victoria Falls Performance 26
1.7.6 Cell Performance . 27
1.7.7 GTX280 Performance 28
1.7.8 Cross Platform Performance and Power Comparison . 28

1.8 Conclusions . 31
1.9 Acknowledgments . 32

Bibliography 33

v

vi

Chapter 1

Auto-tuning Stencil Computations on
Multicore and Accelerators

Kaushik Datta

University of California, Berkeley

Samuel Williams

Lawrence Berkeley National Laboratory

Vasily Volkov

University of California, Berkeley

Jonathan Carter

Lawrence Berkeley National Laboratory

Leonid Oliker

Lawrence Berkeley National Laboratory

John Shalf

Lawrence Berkeley National Laboratory

Katherine Yelick

Lawrence Berkeley National Laboratory

1.1 Introduction . 2
1.2 Stencil Overview . 3
1.3 Experimental Testbed . 4
1.4 Performance Expectation . 5

1.4.1 Stencil Characteristics . 5
1.4.2 A Brief Introduction to the Roofline Model . 7
1.4.3 Roofline Model-based Performance Expectations 9

1.5 Stencil Optimizations . 12
1.5.1 Parallelization and Problem Decomposition . 13
1.5.2 Data Allocation . 14
1.5.3 Bandwidth Optimizations . 15
1.5.4 In-core Optimizations . 16
1.5.5 Algorithmic Transformations . 17

1.6 Auto-Tuning Methodology . 17
1.6.1 Architecture-Specific Exceptions . 19

1.7 Results and Analysis . 21
1.7.1 Nehalem Performance . 21
1.7.2 Barcelona Performance . 24

1

2 Scientific Computing with Multicore and Accelerators

1.7.3 Clovertown Performance . 24
1.7.4 Blue Gene/P Performance . 25

1.7.5 Victoria Falls Performance . 26
1.7.6 Cell Performance . 27
1.7.7 GTX280 Performance . 28
1.7.8 Cross Platform Performance and Power Comparison 28

1.8 Conclusions . 31
1.9 Acknowledgments . 32

1.1 Introduction

The recent transformation from an environment where gains in computa-
tional performance came from increasing clock frequency and other hardware
engineering innovations, to an environment where gains are realized through
the deployment of ever increasing numbers of modest performance cores has
profoundly changed the landscape of scientific application programming. This
exponential increase in core count represents both an opportunity and a chal-
lenge: access to petascale simulation capabilities and beyond will require that
this concurrency be efficiently exploited. The problem for application program-
mers is further compounded by the diversity of multicore architectures that
are now emerging [4]. From relatively complex out-of-order CPUs with com-
plex cache structures, to relatively simple cores that support hardware mul-
tithreading, to chips that require explicit use of software controlled memory,
designing optimal code for these different platforms represents a serious im-
pediment. An emerging solution to this problem is auto-tuning: the automatic
generation of many versions of a code kernel that incorporate various tuning
strategies, and the benchmarking of these to select the highest performing
version. Typical tuning strategies might include: maximizing in-core perfor-
mance with loop unrolling and restructuring; maximizing memory bandwidth
by exploiting non-uniform memory access (NUMA), engaging prefetch by di-
rectives; and minimizing memory traffic by cache blocking or array padding.
Often a key parameter is associated with each tuning strategy (e.g. the amount
of loop unrolling or the cache blocking factor), and these parameters must be
explored in addition to the layering of the basic strategies themselves.

This study focuses on the key numerical technique of stencil computations,
used in many different scientific disciplines, and illustrates how auto-tuning
can be used to produce very efficient implementations across a diverse set
of current multicore architectures. In Section 1.2, we give an overview of the
two stencils studied, followed by a description of the multicore architectures
that form our testbed in Section 1.3. This is followed, in Section 1.4, by our
performance expectations across the testbed based on the computational char-
acteristics of the stencil kernels coupled with a Roofline model analysis. We
summarize the applied optimizations and the parameter search in Sections 1.5

Auto-tuning Stencil Computations on Multicore and Accelerators 3

x
y

z

(a)

x
y

z

(b)

weight point by α

weight point by β

weight point by γ

weight point by δ

FIGURE 1.1: Visualization of the two stencils used in this work. (a) 7-point
stencil (b) 27-point stencil. Note: color represents the weighting factor for each
point in the linear combination stencils.

and 1.6. Finally, we present performance results followed by conclusions in
Sections 1.7 and 1.8.

1.2 Stencil Overview

Partial differential equation (PDE) solvers are employed by a large fraction
of scientific applications in such diverse areas as heat diffusion, electromag-
netics, and fluid dynamics. These applications are often implemented using
iterative finite-difference or similar techniques that sweep over a spatial grid,
performing nearest neighbor computations called stencils. In the simplest sten-
cil operations, each point in the grid is updated with a linear combination of
its neighbors in both time and space. These operations are then used to build
solvers that range from simple Jacobi iterations to complex multigrid and
adaptive mesh refinement methods [5].

Stencil calculations perform global sweeps through data structures that are
typically much larger than the capacity of the available data caches. In addi-
tion, the degree of data reuse is limited to the number of points in a stencil,
typically less than 30. As a result, these computations generally achieve a low
fraction of theoretical peak performance on modern microprocessors as data
cannot be transferred from main memory fast enough to avoid stalling the
computational units. Reorganizing these stencil calculations to take full ad-
vantage of memory hierarchies has been the subject of much investigation over
the years. These have principally focused on tiling optimizations [19, 22, 23]
that attempt to exploit locality by performing operations on cache-sized blocks
of data before moving on to the next block. As seen in Chapter 11 it is possible
to block explicit stencil methods in the time dimension in addition to the three
spatial dimensions. Such strategies can dramatically improve performance by

4 Scientific Computing with Multicore and Accelerators

increasing arithmetic intensity. A study of stencil optimization [16] on (single-
core) cache-based platforms found that tiling optimizations were primarily
effective when the problem size exceeded the on-chip cache’s ability to exploit
temporal recurrences. A more recent study of lattice-Boltzmann methods [28]
employed auto-tuners to explore a variety of effective strategies for refactoring
lattice-based problems for multicore processing platforms. This study expands
on prior work by developing new optimization techniques and applying them
to a broader selection of processing platforms including accelerators like the
Cell Broadband Engine and GPUs.

In this work, we explore the performance of a single Jacobi (out-of-place)
iteration of the 3D 7-point and 27-point stencils. In Jacobi method, we main-
tain two separate double-precision (DP) 3D arrays. In a given iteration, one
array is only read from and the second is only written to. This avoids all data
dependencies and maximizes parallelism.

The 7-point stencil, shown in Figure 1.1(a), weights the center point by
some constant α and the sum of its six neighbors (two in each dimension) by
a second constant β. Näıvely, a 7-point stencil sweep can expressed as a triply
nested ijk loop over the following computation:

Bi,j,k = αAi,j,k +
β(Ai−1,j,k +Ai,j−1,k +Ai,j,k−1 +Ai+1,j,k +Ai,j+1,k +Ai,j,k+1)

(1.1)

where each subscript represents the 3D index into array A or B. The 27-point
3D stencil, as shown in Figure 1.1(b), is similar to the 7-point stencil, but
with additional points to include the edge and corner points of a 3×3×3 cube
surrounding the center grid point. It also introduces two additional constants
— γ, to weight the sum of the edge points, and δ, to weight the sum of the
corner points. Across all machines and experiments we preserve the stencil
functionality and mandate a common, albeit parameterized, data structure.

1.3 Experimental Testbed

Although all multicore processor computers implement a cache-based
shared memory architecture, their microarchitectural implementations are
extremely diverse. As such, the work required to attain good performance
and efficiency varies dramatically among them. Programming heterogeneous,
accelerator-based computers compounds this challenge as there is no consen-
sus on the broader question of memory hierarchy. To fully appreciate and
understand the effects of architectural decisions and to demonstrate the abil-
ity of our auto-tuner to provide performance portability, we use one of the
broadest set of computers imaginable. Although the node architectures are

Auto-tuning Stencil Computations on Multicore and Accelerators 5

diverse, they represent the building-blocks of current and future ultra-scale
supercomputing systems. The key architectural features of these systems ap-
pears in Table 1.1. The details of these machines can be found in the litera-
ture [1, 2, 8–11,13–15,20,21,24].

In addition to using the recent evolution of commodity x86 processor archi-
tectures (Intel’s Core2, AMD’s Barcelona, Intel’s Nehalem) which represent
the addition of integrated memory controllers and multithreading, we also
examine IBM’s Blue Gene/P compute node, as well as the Sun’s chip multi-
threaded (CMT) dual-socket Niagara2 (Victoria Falls). Although the in-order
BGP will deliver rather low per-node performance, because it is optimized for
power-efficiency, its value in ultra scale systems is immense. Unlike the other
architectures, Niagara2 uses CMT to solve the instruction- and memory-level
parallelism challenges with a single programming paradigm.

To explore the advantages of using accelerators, we explored both per-
formance and efficiency for both the QS22 PowerXCell 8i enhanced double
precision Cell blade as well the GTX280 GPU. Cell uses a shared memory
programming model in which all threads, regardless of the core they run on,
may access a common pool of DRAM. Cell exploits heterogeneity (essentially
productivity vs. efficiency) in that the PowerPC cores use caches, but the
SPE’s use disjoint, DMA-filled, local stores.

Conversely, the GPU employs a partitioned DRAM memory. GPU cores
may directly address the GPU DRAM, but may not address CPU DRAM.
Such an architecture allows specialization in the form of optimization for ca-
pacity or performance; the GPU DRAM bandwidth is far greater than any
other architecture. We obviate the complexity of this architecture (shuffling
data between the CPU and GPU) by assuming the problems of interest fit
within GPU DRAM. The GPU cores use a local store architecture similar to
Cell, but fill it via multithreaded vector loads rather than DMA.

1.4 Performance Expectation

Before discussing potential optimizations or performance results, we first
perform some basic kernel analysis to set realistic performance expectations.
We commence with some analysis of the two kernels (and a substantive opti-
mization to the latter) and proceed to analyzing their performance on each of
our seven architectures of interest.

1.4.1 Stencil Characteristics

Consider the 7-point stencil. We observe that in the näıve implementation
each stencil presents 7 reads and 1 write to the memory subsystem. In the 27-
point stencil, the number of reads per stencil increases to 27, but the number

6 Scientific Computing with Multicore and Accelerators

Intel AMD Intel IBM Sun STI Cell NVIDIA
Core Nehalem Barcelona Core2 PPC450d Niagara2 eDP SPE GT200 SM

Clock (GHz) 2.66 2.30 2.66 0.85 1.16 3.20 1.30
type OoO1 OoO OoO in-order in-order in-order vector

threads
per core

2 1 1 1 8 1 82

DP (GFlop/s) 10.7 9.2 10.7 3.4 1.16 12.8 2.6
local store — — — — — 256KB 16KB3

L1 D$ 32KB 64KB 32KB 32KB 8KB — —
private L2$ 256KB 512KB — — — — —

Intel AMD Intel IBM Sun STI Cell NVIDIA
Socket Nehalem Barcelona Core2 BGP chip Niagara2 Processor GT200

cores per 8 SPEs
socket

4 4 4 (MCM) 4 8
+ 1 PPE

30

shared 2×4MB
LL$

8MB 2MB
(2 cores/$)

8MB 4MB — —

memory HW HW HW HW MT w/
parallelism prefetch prefetch prefetch prefetch

MT DMA
coalescing

Xeon Opteron Xeon BGP UltraSparc QS22 GeForce
X5550 2356 E5355 Compute T5140 Cell Blade GTX280

Node Nehalem Barcelona Clovertown Node VF

sockets per 1 GPU
SMP

2 2 2 1 2 2
(+CPU)

Peak DP
(GFlop/s)

85.3 73.6 85.3 13.6 18.7 204.8 78.0

DRAM Pin 21.33(Rd) 42.66(Rd)
BW (GB/s)

51.2 21.33
10.66(Wr)

13.6
21.33(Wr)

51.2 141

Flop:Byte 1.66 3.45 2.66 1.00 0.29 4.00 0.55

DRAM size 1 (device)
(GB)

16 16 12 2 32 32
4 (host)

DRAM DDR3- DDR2- FBDIMM- DDR2- FBDIMM- DDR2- GDDR3-
type 1066 800 667 425 667 800 1100

System 450
Power (W)4

375 350 530 315 610 2655

(236)6

POSIX POSIX POSIX POSIX POSIX libspe CUDAThreading
Threads Threads Threads Threads Threads 2.1 2.0

icc icc icc xlc gcc gcc nvccCompiler
10.0 10.0 10.0 9.0 4.0.4 4.1.1 0.2.1221

STREAM
(GB/s)

35.3 15.2 7.16 12.8 24.9 37 127

TABLE 1.1: Architectural summary of evaluated platforms. 1Superscalar
Out-of-Order (OoO). 2Concurrent CUDA thread blocks (max 8) per SM.
316 KB local-store partitioned among concurrent thread blocks. 4System
power was measured with a digital power meter while under full computa-
tional load. 5Power running Linpack averaged per blade. (www.top500.org)
6GTX280 system power shown for the entire system under load (450W) and
GTX280 card itself (236W).

Auto-tuning Stencil Computations on Multicore and Accelerators 7

of writes remains 1. However, when one considers adjacent stencils, we observe
substantial reuse. Thus, to attain good performance, a cache (if present) must
filter the requests and present only the two compulsory (in 3C’s parlance)
requests per stencil to DRAM [12]. There are two compulsory requests per
stencil because every point in the grid must be read once and written once.
One should be mindful that many caches are write allocate. That is, on a write
miss, they first load the target line into the cache. Such an approach implies
that writes generate twice the memory traffic as reads even if those addresses
are written but never read. The two most common approaches to avoiding this
superfluous memory traffic are write through caches or cache bypass stores.

Table 1.2 shows the per stencil average characteristics for both the 7-
and 27-point stencils as well as the highly optimized common subexpression
elimination (CSE) version of the 27-point stencil (discussed in detail in Sec-
tion 1.5.4). Observe that all three stencils perform dramatically different num-
bers of floating-point operations and loads. Although an ideal cache would
distill these loads and stores into 8 bytes of compulsory DRAM read traffic
and 8 bytes of compulsory DRAM write traffic, caches are typically not write
through, infinite in capacity, or fully associative. As näıve codes are not cache
blocked, we expect an additional 8 bytes of DRAM write allocate traffic, and
another 16 bytes of capacity miss traffic (based on the caches found in super-
scalar processors and the reuse pattern of these stencils) — a 2.5× increase
in memory traffic. Auto-tuners for structured grids will actively or passively
attempt to elicit better cache behavior and less memory traffic on the belief
that reducing memory traffic and exposed latency will improve performance.
If the auto-tuner can eliminate all cache misses, we can improve performance
by 1.65×, but if the auto-tuner also eliminates all write allocate traffic, then
it may improve performance by 2.5×.

Arithmetic intensity is a particularly useful term in bounding performance
expectations. For our purposes, we define arithmetic intensity as the ratio of
floating-point operations to DRAM bytes transferred (i.e. the memory traffic
not filtered by the cache). High arithmetic intensities suggest high temporal
locality and thus a propensity to achieve high performance. Low arithmetic
intensities imply very little computation per memory transaction and thus
performance limited by memory bandwidth. In the latter case, performance
is bounded by the product of arithmetic intensity and DRAM bandwidth.

1.4.2 A Brief Introduction to the Roofline Model

The Roofline model [27, 29, 30] provides a visual assessment of potential
performance and impediments to performance constructed using bound and
bottleneck analysis [18]. Each model is constructed using a communication-
computation abstraction where data is moved from a memory to computa-
tional units. This “memory” could be registers, L1, L2, or L3, but is typically
DRAM. Computation for our purposes will be the floating-point datapaths.
We use arithmetic intensity as a means of expressing the balance between

8 Scientific Computing with Multicore and Accelerators

Memory Traffic (Bytes) Arithmetic
(per stencil) Compulsory Write Capacity Intensity

Type flops $ refs Reads WB’s Allocate Misses Näıve Optimized

7-pt 8 8 8 8 8 16 0.20 0.33 (0.50)

27-pt 30 28 8 8 8 16 0.75 1.25 (1.88)

27-pt
(CSE)

18 10 8 8 8 16 0.45 0.75 (1.13)

TABLE 1.2: Average stencil characteristics. Arithmetic Intensity is
Total Flops

Total DRAM Bytes . WB is an abbreviation for write back. Numbers in parenthe-
ses assume exploitation of cache bypass. Capacity misses are estimated based
on capturing only the temporal recurrence within a plane. The potential ben-
efit from auto-tuning (elimination of write allocations and capacity misses) is
about 1.65× and 2.5× using cached and cache-bypass stores respectively.

computation and communication. Often a first order model (e.g. DRAM–FP)
is sufficient for a given architecture for a range of similar kernels. However,
for certain kernels, depending on the degree of optimization, bandwidth from
the L3 could be the actual bottleneck. For purposes of this paper, we will only
use a DRAM–FP Roofline model.

The Roofline Model defines three types of potential bottlenecks: compu-
tation, communication, and locality (arithmetic intensity). Evocative of the
roofline analogy, these are labeled as ceilings and walls. The in-core ceilings (or
computation bounds) are perhaps the easiest to understand. To achieve peak
performance, a number of architectural features must be exploited — thread-
level parallelism (e.g. multicore), instruction-level parallelism (e.g. keep func-
tional units busy by unrolling and jamming loops), data-level parallelism
(e.g. SIMD), and proper instruction mix (e.g. balance between multiplies and
adds or total use of fused multiply add). If one fails to exploit one of these
(either a failing of the compiler or programmer), the performance is dimin-
ished. We define ceilings as impenetrable impediments to improved perfor-
mance without the corresponding optimization. Bandwidth ceilings are simi-
lar but are derived from incomplete expression and exploitation of memory-
level parallelism. As such we often define ceilings such as no NUMA, or no
prefetching. Finally, locality walls represent the balance between computation
and communication. For many kernels the numerator of this ratio is fixed
(i.e. the number of floating-point operations is fixed), but the denominator
varies as compulsory misses are augmented with capacity or, conflict misses, as
well as speculative or write allocation traffic. As these terms are progressively
added they define a new arithmetic intensity and thus a new locality wall.
Moreover, for each of these terms there is a corresponding optimization which
must be applied (e.g. cache blocking for capacity misses, array padding for

Auto-tuning Stencil Computations on Multicore and Accelerators 9

conflict misses, or cache bypass for write allocations) to remove this potential
impediment to performance. It should be noted that the ordering of ceilings
is based on the perceived abilities of compilers. Those ceilings least likely to
be addressed by a compiler are placed at the top.

One may use the Roofline model to identify potential bottlenecks for each
architecture. Given an arithmetic intensity, one may simply scan upward from
the x-axis. Performance may not exceed a ceiling until the corresponding opti-
mization has been implemented. For example, with cache bypass, the 27-point
stencil on Nehalem requires full instruction-level parallelism (ILP) including
unroll and jam, full data-level parallelism using SSE instructions (SIMDiza-
tion), and NUMA-aware allocation to have any hope of achieving peak per-
formance. Conversely, without cache bypass, the 7-point will not even require
full thread-level parallelism (TLP), that is using all cores, to achieve peak
performance.

1.4.3 Roofline Model-based Performance Expectations

Figure 1.2 presents a Roofline Model for each of our seven computers. The
table in the legend describes the parallelism mix for each in-core ceiling and
defines a circular symbol (A,B,C,D) for cross-referencing the figure. The in-
core ceilings are based on theoretical architectural capabilities. Similarly, we
define a series of bandwidth ceilings based on empirical performance obtained
via an optimized version of the STREAM benchmark that can be configured
not to exploit NUMA or cache-bypass [6]. These are denoted by diamonds X,
Y, and Z. Hashed bars represent the expected per-architecture range in ideal
arithmetic intensity for the 7- and 27-point (non-CSE) stencils differentiated
by use of cache-bypass instructions (see Section 1.5.3) or a local store archi-
tecture. Although cache-bypass behavior can improve arithmetic intensity by
50%, depending on the implemented optimizations and the underlying archi-
tecture, commensurate improvements in performance may not be attainable.

Please note, there is a range in arithmetic intensity due to explicit array
padding, speculative loads from hardware prefetchers, implicit ghost zones
arising from cache blocking, and potential conflict misses. Although on a local
store architecture like Cell, DMA provides us the ability to more precisely
set a tighter upper limit to arithmetic intensity, the obscurities of memory
coalescing and minimum memory quanta (opaque microarchitectural issues)
on the GTX280 results in a somewhat larger range in arithmetic intensity.
Moreover, only a CSE version of the 27-point stencil was implemented on
the GTX280. Finally, for clarity we express roofline-predicted performance in
GFlop/s. To convert to GStencil/s, divide the 7-point stencil by 8, and the
27-point (non-CSE) stencil by 30.

Using the Roofline models for the architectures in Figure 1.2, combined
with the knowledge of each kernel’s arithmetic intensity and instruction mix,
we may not only bound ultimate performance for each architecture, but also
broadly enumerate the optimizations required to achieve it.

10 Scientific Computing with Multicore and Accelerators

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity
1

57% of peak

Clovertown

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity
1

57% of peak

Barcelona

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity
1

57% of peak

Nehalem

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

BlueGene/P

G
Fl

op
/s

Arithmetic Intensity
1

57% of peak

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

Victoria Falls
G

Fl
op

/s

Arithmetic Intensity
1

50% FP

25% FP

12% FP

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

57% of peak

1

Cell Blade

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity
1

100% FP

70% of peak

50% FP

25% FP

GTX280 A

Roofline Performance
Envelope

Expected Range in
Arithmetic Intensity
with Cache Bypass

Expected Range in
Arithmetic Intensity

Legend

FM
A

FP
A
dd

S
IM

D

IL
P

TL
P

0% max 100% 0% none

0% max 100% 0% max

0% max 100% 100% max

100% max 0% 100% max

B

C

D

A

B

A

A

B

C

D

A

A A A

B

B B B

C

C C C

D D D

STREAM Peak

STREAM w/out NUMA

STREAM w/out movntpd

Ceilings

FIGURE 1.2: Roofline model-predicted performance (in GFlop/s) for both
the 7- and the (non-CSE) 27-point stencils with and without write allocate.
Notes: The table in the legend provides a symbol and definition for each type of
ceiling. The ceilings for Victoria Falls and the GTX280 are the fraction of the
dynamic instruction mix that is floating-point. Victoria Falls and Blue Gene/P
do not exploit cache bypass (they always use write allocate).

Nehalem: For the 7-point stencil, Nehalem will ultimately be memory-
bound with or without cache-bypass. Given the STREAM bandwidth and
ideal arithmetic intensity, 17 GFlop/s (2.1 GStencil/s) is a reasonable perfor-
mance bound. To achieve it, some instruction-level parallelism or data-level
parallelism coupled with correct NUMA allocation is required. However, as
we move to the 27-point stencil, we observe that Nehalem will likely become
compute limited; likely achieving between 40 and 49 GFlop/s (1.3–1.6 GS-
tencil/s). There is some uncertainty here due to the confluence of a broad

Auto-tuning Stencil Computations on Multicore and Accelerators 11

range in arithmetic intensity at a point on the roofline where computation is
nearly balanced with communication. The transition from memory-bound to
compute-bound implies that the benefits of cache-bypass will be significantly
diminished as one moves from the 7-point to the 27-point stencil.

Barcelona: When one considers Barcelona, a processor architecturally
similar to Nehalem but built on a previous generation’s technology, we see
that although it exhibits similar computational capability, its substantially
lower memory bandwidth mandates that all stencil kernels be memory-bound.
Barcelona should be limited to 7.3 GFlop/s (0.9 GStencil/s) and 29 GFlop/s
(0.98 GStencil/s) for the 7- and 27-point stencils respectively. However, to
achieve high performance on the latter, SIMD (DLP), substantial unrolling
(ILP), and proper NUMA allocation will be required.

Clovertown: Our third x86 architecture is Intel’s Clovertown; an even
older, front side bus (FSB) based architecture. It too has similar compu-
tational capabilites to Nehalem and Barcelona, but has even lower memory
bandwidth. As such, all kernels will be memory-bound. Interestingly, although
the STREAM benchmark time-to-solution is superior using the cache-bypass
store (movntpd instruction), the observed STREAM bandwidth (based on to-
tal bytes including those from write allocations) is substantially lower than
the standard bandwidth (movpd instruction). As such, the benefit of exploit-
ing cache bypass on stencil operations is muted to perhaps 20% instead of the
ideal 50%. Clovertown will be so heavily memory-bound that simple paral-
lelization should be enough to achieve peak performance on the 7-point, where
only moderate unrolling is sufficient on the 27-point. We expect Clovertown
performance to be limited to 2.9 GFlop/s (0.36 GStencil/s) and 12 GFlop/s
(0.39 GStencil/s) for the 7- and 27-point stencils respectively

Blue Gene/P: Architectures like the chip used in Blue Gene/P are much
more balanced, dedicating a larger fraction of their power and design budget
to DRAM performance. This is not to say they have higher absolute memory
bandwidth, but rather the design is more balanced given the low frequency
quad core processors. As we were not able to exploit cache bypass we see sub-
stantially lower arithmetic intensity than the x86 architectures. This simple,
first order model suggests that if we were able to perfectly SIMDize and unroll
the code, we would expect the 7-point stencil to be memory bound, yielding
4.1 GFlop/s or 0.5 GStencil/s, but the 27-point to be compute-bound limited
by the relatively small fraction of multiplies in the code to 7.8 GFlop/s or
0.26 GStencil/s. This may be difficult to achieve given the limited issue-width
and in-order PPC450 architecture.

Victoria Falls: Although Victoria Falls uses a dramatically different
mechanism for expression of memory-level parallelism (massive thread-level
parallelism), its performance characteristics should be similar to Blue Gene/P
in that it will be memory bound for the 7-point stencil, and compute-bound
for the 27-point with performances of 7.5 GFlop/s (0.94 GStencil/s) and
18.6 GFlop/s (0.6 GStencil/s) respectively. We did not exploit any form of
cache-bypass on Victoria Falls. As multithreading provides an attractive so-

12 Scientific Computing with Multicore and Accelerators

lution to avoiding the ILP pitfall, our primary concern after proper NUMA
allocations is that floating-point instructions dominate the instruction mix on
the 27-point stencil. As such, the Victoria Falls Roofline is shown with compu-
tational ceilings corresponding to various ratios of floating-point instructions.

Cell: Although Cell is a local store-based architecture, we may seam-
lessly analyze it using the Roofline model. DMA obviates the need for write
allocate behavior, but comes with a severe alignment penalty. With proper
array padding and blocking for a rather small local store, we may achieve
78% of the ideal x86 arithmetic intensity. More succinctly, Cell will certainly
generate more compulsory and capacity memory traffic than its x86 counter-
parts. Unfortunately, this is a rather unattractive situation given the QS22’s
DDR2-based memory bandwidth is now no higher than the top-of-the-line
x86 Nehalem processor. As such, we expect Cell to be memory-bound on both
stencils, delivering up to 17.6 GFlop/s (2.2 GStencil/s) and 70.6 GFlop/s
(2.35 GStencil/s). NUMA and appropriate loop unrolling will be required for
both, and SIMDization for the latter.

GTX280: Although one could ostensibly classify the GTX280 as a local
store-based architecture, the lack of documentation on the memory subsystem
behavior results in a wide range of possible arithmetic intensities. Overall, the
shape of the roofline for the GTX280 is much more in line with Blue Gene/P
(albeit a much higher roofline) than with Cell. Unfortunately, for the 7-point
stencil to achieve peak performance (52 GFlop/s or 6.5 GStencil/s), we would
require 100% of the dynamic instructions to be floating-point. As a large frac-
tion will need to be loads and address calculations, we expect performance to
be significantly lower. It should be noted that just as cache based microar-
chitectures must access DRAM in full cache lines, the GPU microarchitecture
must access DRAM in units of the memory quanta. This complexity is hid-
den from programmers, but the performance impacts may come as a surprise.
That is, if the memory quanta were large, arithmetic intensity would be so
depressed (lack of spatial locality on certain accesses) that the 7-point stencil
might become memory bound. Due to the complexity of GPU programming,
only the common subexpression elimination (CSE) version of the 27-point
stencil was implemented. Given user and compiler elimination of floating-
point operations, the number of operations per stencil was reduced to about
17. Although this pushes the kernel toward the memory-bound region, it can
significantly improve performance to about 3.2 GStencil/s. Of course, this also
assumes the unrealistic 100% floating-point instruction mix.

1.5 Stencil Optimizations

Compilers utterly fail to achieve satisfactory stencil code performance
(even with manual pthread parallelization) because implementations optimal

Auto-tuning Stencil Computations on Multicore and Accelerators 13

+Y

+Z

(b)
Decomposition into

Thread Blocks

(c)
Decomposition into

Register Blocks

(a)
Decomposition of a Node Block

into a Chunk of Core Blocks

RYRX
RZ

CY

C
Z

CX

TYTX

NY
N

Z
NX

+X
(unit stride) TY

C
Z

TX

Stream out planes to
target grid

Stream in planes
from source grid

FIGURE 1.3: (LEFT) Four-level problem decomposition: In (a), a node block
(the full grid) is broken into smaller chunks. One core block from the chunk
in (a) is magnified in (b). A single thread block from the core block in (b) is
then magnified in (c) and decomposed into register blocks. (RIGHT) Circular
queue optimization: planes are streamed into a queue containing the current
time step, processed, written to out queue, and streamed back.

for one microarchitecture may deliver suboptimal performance on another (an
artifact perhaps eventually mitigated by incorporating auto-tuning into com-
pilers). Moreover, their ability to infer legal domain-specific transformations,
given the freedoms of the C language, is limited and permanent. To that end,
we discuss a number of optimizations at the source level to improve stencil per-
formance, including: NUMA-aware data allocation, array padding, multilevel
blocking, loop unrolling and reordering, common subexpression elimination,
as well as prefetching for cache-based architectures and DMA for local-store
based architectures. Additionally, we present two novel stencil optimizations:
circular queue and thread blocking. The optimizations can roughly be divided
into five categories: problem decomposition (parallelization), data allocation,
bandwidth optimizations, in-core optimizations, and algorithmic transforma-
tions. In this section, we discuss each of these techniques in greater detail.
Then, in Section 1.6, we cover our overall auto-tuning strategy, including
architecture-specific exceptions. These optimizations are an extension of those
used in our previous work [7].

1.5.1 Parallelization and Problem Decomposition

In this work, we examine parallelization through threading and geometric
problem decomposition. Across all architectures, we applied a four-level geo-
metric decomposition strategy, visualized in Figure 1.3(left), that simultane-
ously implements parallelization, cache blocking, and loop unrolling. This mul-
tilevel decomposition encompasses three separate optimizations: core blocking,
thread blocking, and register blocking. Note that the nature of out-of-place it-

14 Scientific Computing with Multicore and Accelerators

erations implies that all blocks are independent and can be computed in any
order. This greatly facilitates parallelization.

We now discuss the decomposition strategy from the largest structures to
the finest. First, a node block (the entire problem) of size NX × NY × NZ is
partitioned in all three dimensions into smaller core blocks of size CX ×CY ×
CZ , where X is the unit stride dimension. This first step is designed to avoid
last level cache capacity misses by effectively cache blocking the problem.
Each core block is further partitioned into a series of thread blocks of size
TX × TY × CZ . Core blocks and thread blocks are the same size in the Z
(least unit stride) dimension, so when TX = CX and TY = CY , there is only
one thread per core block. This second decomposition is designed to exploit
the common locality threads may have within a shared cache or local memory.
Then, our third decomposition partitions each thread block into register blocks
of size RX×RY ×RZ . The dimensions of the register block indicate how many
times the inner loop has been unrolled in each of the three dimensions. This
allows us to explicitly express data- and instruction-level parallelism rather
that assuming the compiler may discover it.

To facilitate NUMA allocation, core blocks are grouped together into
chunks of size ChunkSize and assigned in bulk to an individual core. The
number of threads in a core block (Threadscore) is simply CX

TX ×
CY
TY , so we

then assign these chunks to groups of Threadscore threads in a round-robin
fashion (similar to the schedule clause in OpenMP’s parallel for directive).
Note that all the core blocks in a chunk are processed by the same subset
of threads. When ChunkSize is large, concurrent core blocks may map to the
same set in cache, causing conflict misses. However, we do gain a benefit from
diminished NUMA effects. In contrast, when ChunkSize is small, concurrent
core blocks are mapped to contiguous set addresses in a cache, reducing con-
flict misses. This comes at the price of magnified NUMA effects. We therefore
tune ChunkSize to find the best tradeoff of these two competing effects. In
general, this decomposition scheme allows us to explain shared cache locality,
cache blocking, register blocking, and NUMA-aware allocation within a single
formalism.

1.5.2 Data Allocation

The layout of our data array can significantly affect performance. As a
result, we implemented a NUMA-aware allocation to minimize inter-socket
communication and array padding to minimize intra-thread conflict misses.

Our stencil code implementation allocates the source and destination grids
as separate large arrays. On non-uniform memory access (NUMA) systems
that implement a “first touch” page mapping policy, a memory page will be
mapped to the socket where it is initialized. Näıvely, if we let a single thread
fully initialize both arrays, then all the memory pages containing those arrays
will be mapped to that particular socket. Then, if we used threads across

Auto-tuning Stencil Computations on Multicore and Accelerators 15

multiple sockets to perform array computations, they would perform expensive
inter-socket communication to retrieve their needed data.

Since our decomposition strategy has deterministically specified which
thread will update each array point, a better alternative is to let each thread
initialize the points that it will later be processing. This NUMA-aware alloca-
tion correctly pins data to the socket tasked to update it. This optimization
is only expected to help when we scale from one socket to multiple sockets,
but without it, performance on memory-bound architectures could easily be
cut in half.

The second data allocation optimization that we utilized is array padding.
Some architectures have relatively low associativity shared caches, at least
when compared to the product of threads and cache lines required by the sten-
cil. On such computers, conflict misses can significantly impair performance.
In other cases, some architectures prefer certain alignments for coalesced mem-
ory accesses; failing to do so can greatly reduce memory bandwidth. To avoid
these pitfalls, we pad the unit-stride dimension (NX ← NX + pad).

1.5.3 Bandwidth Optimizations

For stencils with low arithmetic intensities, the 7-point stencil being an
obvious example, memory bandwidth is a valuable resource that needs to be
managed effectively. As a result, we introduce three bandwidth optimizations:
software prefetching to hide memory latency and thereby increase effective
memory bandwidth, circular queue to minimize conflict misses, and the cache
bypass instruction to dramatically reduce overall memory traffic.

The architectures used in this paper employ four principal mechanisms
for hiding memory latency: hardware prefetching, software prefetching, DMA,
and multithreading. The x86 architectures use hardware stream prefetchers
that can recognize unit-stride and strided memory access patterns. When such
a pattern is detected successive cache lines are prefetched without first being
demand requested. Hardware prefetchers will not cross TLB boundaries (only
512 consecutive doubles), and can be easily halted by either spurious mem-
ory requests or discontinuities in the address stream. The former demands
the hardware prefetcher be continually prodded to prefetch more. The latter
may arise when CX < NX. That is, when core blocking results in stanza ac-
cess patterns and jumps in the address stream. Although this is not an issue
on multithreaded architectures, they may not be able to completely cover all
cache and memory latency. In contrast, software prefetching, which is available
on all cache-based processors, does not suffer from either limitation. However,
it can only express a cache line’s worth of memory level parallelism. In addi-
tion, unlike a hardware prefetcher (where the prefetch distance is implemented
in hardware), software prefetching must specify the appropriate distance to
effectively hide memory latency. DMA is only implemented on Cell, but can
easily express the stanza memory access patterns. DMA operations are de-

16 Scientific Computing with Multicore and Accelerators

coupled from execution and are implemented as double buffered reads of core
block planes.

The circular queue implementation, visualized in Figure 1.3(right), is a
technique that allows efficient parallelization, eliminates conflict misses, and
allows efficient expression of memory-level parallelism. This approach allocates
a shadow copy of the planes of a core block in local memory or registers.
The seven-point stencil requires three read planes to be allocated, which are
then populated through loads or DMAs. However, it can often be beneficial
to allocate an output plane and double buffer reads and writes as well (6
cache blocked planes). The advantage of the circular queue is the potential
avoidance of lethal conflict misses. We currently explore this technique only
on the local-store architectures but note that future work will extend this to
the cache based architectures.

So far we have discussed optimizations designed to hide memory latency
to improve memory bandwidth, but we can extend this discussion to opti-
mizations that minimize memory traffic. As described in Section 1.4.1 we may
eliminate 33% of the memory traffic and thus increase arithmetic intensity by
50% by bypassing any write-allocate cache. If bandwidth bound, this can also
increase performance by 50%. This benefit is clearly implicit on the cache-less
Cell and GT200 architectures. However, this optimization is not supported on
either Blue Gene/P or Victoria Falls.

1.5.4 In-core Optimizations

For stencils with higher arithmetic intensities, the 27-point stencil being
a good example, computation can often become a bottleneck. To address this
issue, we perform register blocking to effectively utilize a given platform’s
registers and functional units.

Although superficially simple, there are innumerable ways of optimizing
the execution of a 7-point or 27-point stencil. After tuning for bandwidth and
memory traffic, it often helps to explore the space of inner loop transforma-
tions to find the fastest possible code. To this end, we wrote a code generator
that could generate any unrolled, jammed and reordered version of the stencil.
Register blocking is, in essence, unroll and jam in X, Y , and Z. This creates
small RX × RY × RZ blocks that sweep through each thread block. Larger
register blocks have better surface-to-volume ratios and thus reduce the de-
mands for L1 cache bandwidth whilst simultaneously expressing instruction-
and data-level parallelism. However, in doing so, they may significantly in-
crease register pressure.

Although the standard code generator produces portable C code, compil-
ers often fail to effectively SIMDize the resultant code. As such, we created
several instruction set architecture (ISA) specific variants that produce ex-
plicitly SIMDized code for x86, Blue Gene/P, and Cell using intrinsics. These
versions will deliver much better in-core performance than a compiler. How-

Auto-tuning Stencil Computations on Multicore and Accelerators 17

x x x x
y y y y

z z z z

(a) (b) (c) (d)

FIGURE 1.4: Visualization of common subexpression elimination. (a) Ref-
erence 27-point stencil. (b)-(d) decomposition into 7 simpler stencils. As one
loops through x, 2 of the stencils from both (b) and (c) will be reused for
x+ 1.

ever, as one might expect, this may have a limited benefit on memory-bound
stencils like the 7-point.

1.5.5 Algorithmic Transformations

Our final optimization involves identifying and eliminating common ex-
pressions across several points. This type of common subexpression elimination
can be considered to be an algorithmic transformation because of two reasons-
the flop count is being reduced, and the flops actually being performed may be
performed in a different order than our original implementation. Due to the
non-associativity of floating point operations, this may well produce results
that are not bit-wise equivalent to those from the original implementation.

For the 7-point stencil, there was very little opportunity to identify and
eliminate common subexpressions. Hence, this optimization was not per-
formed, and 8 flops are always performed for every point. The 27-point stencil,
however, presents such an opportunity. Consider Figure 1.4. If one were to per-
form the reference 27-point stencil for successive points in x, we perform 30
flops per stencil. However, as we loop through x, we may dynamically cre-
ate several temporaries (unweighted reductions) — Figure 1.4(b) and (c). For
27-point stencils at x and x + 1, there is substantial reuse of these tempo-
raries. On FMA-based architectures, we may implement the 27-point stencil
by creating these temporaries and performing a linear combination using 2
temporaries from Figure 1.4(b), two from Figure 1.4(c) and the stencil shown
in Figure 1.4(c). This method requires about 15 instructions. On the x86 ar-
chitectures, we create a second group of temporaries by weighting the first set.
With enough loop unrollings in the inner loop, the CSE code has a lower bound
of 18 flops/point. Disappointingly, neither the gcc nor icc compilers were able
to apply this optimization automatically. However, on the GTX280, a combi-
nation of a 24-flop hand-coded CSE implementation and the nvcc compiler
was able to produce a 17-flop implementation.

18 Scientific Computing with Multicore and Accelerators

Optimization parameter tuning range by architecture
Category Parameter Name x86 BGP VF Cell GTX280

NUMA Aware X N/A X X N/AData
Pad (max): 32 32 32 15 15Alloc

Pad (multiple of): 1 1 1 16 16

CX NX NX {8...NX} {64...NX} {16...32}
Core Block Size CY {4...NY} {4...NY} {4...NY} {8...NY} CX

CZ {4...NZ} {4...NZ} {4...NZ} {128...NZ} 64
Domain TX CX CX {8...CX} CX 1
Decomp

Thread Block Size
TY CY CY {8...CY} CY CY/4

Chunk Size {1... NX×NY×NZ
CX×CY×CZ×NThreads

} N/A

RX {1...8} {1...8} {1...8} {1...16}† TX
Register Block Size RY {1...4} {1...4} {1...4} {1...8}† TY

RZ {1...4} {1...4} {1...4} 1 1
Low (SIMDized) X X N/A X N/A
Level Prefetch Distance {0...64} {0...64} {0...64} N/A N/A

DMA Size N/A N/A N/A CX×CY N/A
Cache Bypass X — N/A implicit implicit
Circular Queue — — — X X
Search Strategy Iterative Greedy Exhaustive HandTuning

Data-aware X X X X N/A

TABLE 1.3: Attempted optimizations and the associated parameter spaces
explored by the auto-tuner for a 2563 stencil problem (NX,NY,NZ = 256).
All numbers are in terms of doubles. †On Cell, the 7-point stencil only used
2×8 register blocks.

1.6 Auto-Tuning Methodology

Thus far, we have described our applied optimizations in general terms.
In order to take full advantage of the optimizations mentioned in Section 1.5,
we developed an auto-tuning environment [7] similar to that exemplified by
libraries like ATLAS [26] and OSKI [25]. To that end, we first wrote a Perl
code generator that produces multithreaded C code variants encompassing our
stencil optimizations. This approach allows us to evaluate a large optimization
space while preserving performance portability across significantly varying
architectural configurations.

The parameter space for each optimization individually, shown in Ta-
ble 1.3, is certainly tractable — but the parameter space generated by combin-
ing these optimizations results in a combinatorial explosion. Moreover, these
optimizations are not independent of one another; they can often interact in
subtle ways that vary from platform to platform. Hence, the second compo-
nent of our auto-tuner is the search strategy used to find a high-performing
parameter configuration. For this study, we afforded ourselves the luxury of
spending many hours tuning a single node, since large scale stencil applica-

Auto-tuning Stencil Computations on Multicore and Accelerators 19

tions may be scaled to thousands of nodes and run many times. At this level
of parallelism, it is vital to ensure that the software is as efficient as possible.

To find the best configuration parameters, we employed an iterative
“greedy” search on the cache-based machines. First, we fixed the order of
optimizations. Generally, they were ordered by their level of complexity, but
there was some expert knowledge employed as well. This ordering is shown in
the legends of Figures 1.5 and 1.6; the relevant optimizations were applied in
order from bottom to top. Within each individual optimization, we performed
an exhaustive search to find the best performing parameter(s). These values
were then fixed and used for all later optimizations. We consider this to be an
iterative greedy search. If all applied optimizations were independent of one
another, this search method would find the global performance maxima. How-
ever, due to subtle interactions between certain optimizations, this usually will
not be the case. Nonetheless, we expect that it will find a good-performing set
of parameters after doing a full sweep through all applicable optimizations.

In order to judge the quality of the final configuration parameters, two
metrics can be used. The more useful metric is the Roofline model, which
provides an upper bound on kernel performance. If our fully tuned imple-
mentation approaches this bound, then further tuning will not be productive.
The second metric is the performance improvement obtained from doing a
second pass through our greedy iterative search. This is represented by the
topmost color in the legends of Figures 1.5 and 1.6. If this second pass im-
proves performance substantially, then our initial greedy search obviously was
not effective.

For the local-store architectures, two other search strategies were used.
On the Cell, the size of the local store sufficiently restricted the search space
so that an exhaustive search could be performed. For the GTX280 GPU, a
CUDA code generator was not written; instead, since the code was only being
deployed on a single architecture, it was hand-tuned (manual-search) by a
knowledgeable programmer.

1.6.1 Architecture-Specific Exceptions

Due to limited potential benefit and architectural characteristics, not all
architectures implement all optimizations or explore the same parameter
spaces. Table 1.3 details the range of values for each optimization parameter
by architecture. In this section, we explain the reasoning behind these excep-
tions to the full auto-tuning methodology. To make the auto-tuning search
space tractable, we typically explored parameters in powers of two.

The x86 architectures, Barcelona and Clovertown, rely on hardware stream
prefetching as their primary means for hiding memory latency. The Nehalem
architecture adds multithreading as another mechanism to tolerate memory
latency and improve instruction scheduling. As previous work [17] has shown
that short stanza lengths severely impair memory bandwidth, we prohibit core
blocking in the unit stride (X) dimension, so CX = NX. Thus, we expect

20 Scientific Computing with Multicore and Accelerators

the hardware stream prefetchers to remain engaged and effective. Although we
utilized both Nehalem threads for computation, we did not attempt to perform
thread blocking on this architecture. Further, neither of the two other x86
architectures support multithreading. Thus, the thread blocking search space
was restricted so that TX = CX, and TY = CY . As x86 processors implement
SSE2, we implemented a special SSE SIMD code generator for the x86 ISA
that would produce both explicit SSE SIMD intrinsics for computation as well
as the option of using a non-temporal store movntpd to bypass the cache. On
these computers, the threading model was Pthreads.

For the BG/P architecture, the optimization and parameter space restric-
tions are mostly the same as those for x86. Hardware stream prefetch is im-
plemented on this processor, so again we prohibit blocking in the unit stride
dimension. We also implemented a BG/P-specific SIMD code generator, but
did not use any cache bypass feature.

Although Victoria Falls is also a cache-coherent architecture, its multi-
threading approach to hiding memory latency is very different than out-of-
order execution coupled with hardware prefetching. As such, we allow core
blocking in the unit stride dimension. Moreover, we allow each core block to
contain either 1 or 8 thread blocks. In essence, this allows us to conceptual-
ize Victoria Falls as either a 128 core machine or a 16 core machine with 8
threads per core. In addition, there are no supported SIMD or cache bypass
instrinsics, so only the portable pthreads C code was run.

Unlike the previous four computers, Cell uses a cache-less local-store ar-
chitecture. Moreover, instead of prefetching or multithreading, DMA is the
architectural paradigm utilized to express memory level parallelism and hide
memory latency. This has a secondary advantage in that it also eliminates su-
perfluous memory traffic from the cache line fill on a write miss. The Cell code
generator produces both C and SIMDized code. However, our use of SDK 2.1
resulted in poor double-precision code scheduling as the compiler was schedul-
ing for a QS20 rather than a QS22. Unlike the cache-based architectures, we
implement the dual circular queue approach on each SPE. Moreover, we dou-
ble buffer both reads and writes. For optimal performance, DMA must be
128 byte (16 doubles) aligned. As such, we pad the unit stride (X) dimension
of the problem so that NX + 2 is a multiple of 16. For expediency, we also
restrict the minimum unit stride core blocking dimension (CX) to be 64. The
threading model was IBM’s libspe.

The GT200 has architectural similarities to both Victoria Falls (multi-
threading) and Cell (local-store based). However, it differs from all other ar-
chitectures in that the device DRAM is disjoint from the host DRAM. Unlike
the other architectures, the restrictions of the CUDA programming model
constrained optimization to a very limited number of cases. First, we only
explore only two core block sizes: 32×32 and 16×16. We depend on CUDA
to implement the threading model and use thread blocking as part of the
tuning strategy. The thread blocks for the two core block sizes are restricted
to 1×8 and 1×4 respectively. Since the GT200 contains no automatically-

Auto-tuning Stencil Computations on Multicore and Accelerators 21

managed caches, we use the circular queue approach that was employed in
the Cell stencil code. However, the register file is four times larger than the
local memory, so we chose register blocks to be the size of thread blocks
(RX = TX,RY = TY,RZ = 1) and chose to keep some of the planes in the
register file rather than shared memory.

1.7 Results and Analysis

To understand the performance of the 7-point and 27-point stencils de-
tailed in Section 1.2, we apply one out-of-place stencil sweep at a time to a
2563 grid. The reference stencil code uses only two large flat 3D scalar arrays
as data structures, and that is maintained through all subsequent tuning. We
do increase the size of these arrays with an array padding optimization, but
this does not introduce any new data structures nor change the array ordering.
In addition, in order to get accurate measurements, we report the average of
at least 5 timings for each data point, and there was typically little variation
among these readings.

Below we present and analyze the results from auto-tuning the two sten-
cils on each of the seven architectures. Please note, in all figures, we present
performance as GStencil/s (109 stencils per second), to allow a meaningful
comparison between CSE and non-CSE kernels, and we order threads to first
exploit all the threads on a core, then populate all cores within a socket, and
finally use multiple sockets. We stack bars to represent the performance as the
auto-tuning algorithm progresses through the greedy search i.e. subsequent
optimizations are built on best configuration of the previous optimization.

1.7.1 Nehalem Performance

Figure 1.5 shows 7-point stencil performance, and we observe several in-
teresting features. First, if we only examine the reference implementation,
performance is fairly constant regardless of core count. This is discouraging
news for programmers; the compiler, even with all optimization flags set, can-
not take advantage of the extra resources provided by more cores.

The first optimization we applied was using a NUMA-aware data alloca-
tion. By correctly mapping memory pages to the socket where the data will
be processed, this optimization provides a speedup of 2.5× when using all
8 cores of the SMP. Subsequently, core blocking and cache bypass also pro-
duced performance improvements of 74% and 37%, respectively. Both of these
optimizations attempt to reduce memory traffic (capacity misses), suggesting
that performance was bandwidth-bound at high core counts. By looking at
the Roofline model for the Nehalem (shown in Figure 1.2), we see that this is
indeed the case. The model predicts that if the stencil calculation can achieve

22 Scientific Computing with Multicore and Accelerators

Opteron 2356

(Barcelona)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8

Cores

G
S

te
n

c
il

s
/

s

BlueGene/P

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 4

Cores

G
S
te
n
c
il
s
/
s

QS22 Blade

(Cell Broadband Engine)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 2 4 8 16

SPEs (cores)

G
S

te
n

c
il

s
/

s

Xeon X5355

(Clovertown)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 4 8

Cores

G
S

te
n

c
il
s
/

s

NVIDIA GTX280

(GPU)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

CUDA "Thread Blocks"

G
S

te
n

c
il

s
/

s

Xeon X5550

(Nehalem)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1 2 4 8

Fully Threaded Cores

G
S

te
n

c
il

s
/

s

UltraSparc T2+ T5140

(Victoria Falls)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16

Fully Threaded Cores

G
S

te
n

c
il

s
/

s

+Array Padding

+NUMA-aware allocation

Reference Local Store Implementation

Reference (cache) Implementation

2nd pass through greedy search

+Common Subexpression Elimination
(another register and core blocking search)

+Cache Bypass (i.e. movntpd)

+Explicit SIMDization
(another register and core blocking search)

+Explicit SW Prefetching

+Register Blocking
(portable C code)

+Core Blocking

+Thread Blocking

1

2

3

4

5

6

7

8

9

10

11

12

8

2

3

9

4

5
8

12

6

6

9

3

5

10

3

5

10

7

5

10

FIGURE 1.5: 7-point Stencil performance. In all of the graphs above, “GS-
tencil/s” can be converted to “GFlop/s” by multiplying by 8 flops/stencil.

STREAM bandwidth, while minimizing non-compulsory cache misses, then
the 7-point stencil will attain a maximum of 2.1 GStencil/s (16.8 GFlop/s).
In actuality, we achieve 2.0 GStencil/s (15.8 GFlop/s). As this is accept-
ably good performance, we can stop tuning. Overall, auto-tuning produced a
speedup of 4.5× at full concurrency and also showed an improvement of 4.5×
when scaling from 1 to 8 cores.

Observe that register blocking and software prefetching ostensibly had
little performance benefit — a testament to icc and hardware prefetchers.
Remember, the auto-tuning methodology explores a large number of optimiza-
tions in the hope that they may be useful on a given architecture–compiler
combination. As it is difficult to predict this beforehand, it is still important
to try each relevant optimization.

Auto-tuning Stencil Computations on Multicore and Accelerators 23

UltraSparc T2+ T5140

(Victoria Falls)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16

Fully Threaded Cores

G
S

te
n

c
il

s
/

s

Xeon X5550

(Nehalem)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8

Fully Threaded Cores

G
S

te
n

c
il

s
/

s

NVIDIA GTX280

(GPU)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

CUDA "Thread Blocks"

G
S

te
n

c
il

s
/

s

Xeon X5355

(Clovertown)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 4 8

Cores

G
S

te
n

c
il

s
/

s

BlueGene/P

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 4

Cores

G
S
te
n
c
il
s
/
s

Opteron 2356

(Barcelona)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8

Cores

G
S

te
n

c
il

s
/

s

+Array Padding

+NUMA-aware allocation

Reference Local Store Implementation

Reference (cache) Implementation

2nd pass through greedy search

+Common Subexpression Elimination
(another register and core blocking search)

+Cache Bypass (i.e. movntpd)

+Explicit SIMDization
(another register and core blocking search)

+Explicit SW Prefetching

+Register Blocking
(portable C code)

+Core Blocking

+Thread Blocking

QS22 Blade

(Cell Broadband Engine)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1 2 4 8 16

SPEs (cores)

G
S

te
n

c
il

s
/

s

1

2

3

4

5

6

7

8

9

10

11

12

11

12
11

5
6

2

6

9
11

6

11
12

5

10

3
5

11

3

5

11

FIGURE 1.6: 27-point Stencil performance. Before the Common Subex-
pression Elimination optimization is applied, “GStencil/s” can be converted
to “GFlop/s” by multiplying by 30 flops/stencil. Note, explicitly SIMDized
BG/P performance was slower than the scalar form both with and without
CSE. As such, it is not shown.

The 27-point stencil performs 3.8× more flops per grid point than the 7-
point stencil (before application of CSE), so a very different set of bottlenecks
may ultimately limit performance. We see in Figure 1.6 that the performance
of the reference implementation improves by 3.3× when scaling from 1 to
4 cores, but then drops slightly when we use all 8 cores across both sock-
ets. This performance quirk is eliminated when we apply the NUMA-aware
optimization.

There are several indicators that strongly suggest that it is compute-bound
— core blocking shows less benefit than for the 7-point stencil, cache bypass

24 Scientific Computing with Multicore and Accelerators

does not show any benefit, performance scales linearly with the number of
cores, and the CSE optimization is successful across all core counts. Again, this
is correctly predicted by the Roofline model; however, due to the arithmetic
intensity uncertainty factors mentioned in Section 1.4.3, the model is overly
optimistic in predicting performance as 1.6 GStencil/s (49.1 GFlop/s) when
0.95 GStencil/s (28.5 GFlop/s) is actually achieved. Nonetheless, after tuning,
we see a 3.6× speedup when using all 8 cores. Moreover, we also see parallel
scaling of 8.1× when going from 1 to 8 cores — the ideal multicore scaling.

1.7.2 Barcelona Performance

In many ways, the performance of the 7-point stencil on Barcelona is very
similar to that of Nehalem (no surprise given the very similar architecture). In
Figure 1.5, we again see that the reference implementation shows no parallel
scaling at all. However, the NUMA-aware version increased performance by
115% when both sockets are engaged.

Like the 7-point stencil on Nehalem, the optimizations that made the
biggest impact are cache bypass and core blocking. The cache bypass (stream-
ing store) intrinsic provides an additional improvement of 55% when using all
eight cores — indicative of its importance when the machine is memory bound.

Unlike the 27-point stencil on Nehalem, the sub-linear scaling of Barcelona
in Figure 1.6 seems to indicate that the kernel is constrained by memory band-
width. However, the fact that cache bypass did not improve performance,
while the CSE optimization improves performance by 18% at maximum con-
currency, hints that it is close to being compute-bound. Overall, auto-tuning
was able to produce a 4.1× speedup using all 8 cores. In addition, scaling from
1 to 8 cores now produces a speedup of 5.7×.

The Roofline model for Barcelona, shown in Figure 1.2(b), again predicts
that both the 7-point and 27-point stencils will be bandwidth-bound. For the
7-point stencil (shown in Figure 1.5), this is likely true, as the Roofline predicts
0.91 GStencil/s (7.3 GFlop/s), which reconciles well with the 0.86 GStencil/s
(6.9 GFlop/s) we actually attained. The fact that the cache bypass instruction
produced speedups commensurate with the reduction in memory traffic further
corroborates this idea.

Similar to the Nehalem predictions, the 27-point stencil (without CSE)
predictions for Barcelona are looser than for the 7-point stencil. The Roofline
model predicts an upper bound of about 0.98 GStencil/s (29.3 GFlop/s),
but our attained performance, as seen in Figure 1.6, is 0.51 GStencil/s
(15.4 GFlop/s). This suggests that as one approaches a compute-bound state,
one should employ multiple Roofline models per architecture. On might in-
fer that the 27-point stencil is likely compute-bound on Barcelona as cache
bypass was not beneficial where CSE optimization was.

Auto-tuning Stencil Computations on Multicore and Accelerators 25

1.7.3 Clovertown Performance

Unlike the Nehalem and the Barcelona computers, the Clovertown is a
Uniform Memory Access (UMA) machine with an older front side bus ar-
chitecture. This implies that the NUMA-aware optimization will not be use-
ful and that both stencil kernels will likely be bandwidth-constrained. If we
look at Figure 1.5, both these predictions are true for the 7-point stencil.
Only memory optimizations like core blocking and cache bypass seem to be
of any use. After full tuning, we attain a performance of 0.32 GStencil/s
(2.54 GFlop/s), which aligns well with the Roofline upper bound of 0.36 GS-
tencil/s (2.9 GFlop/s) shown in Figure 1.2. Due to the severe bandwidth
limitations on this machine, auto-tuning had diminished effectiveness; using
all 8 cores, performance improves by only 1.9×. In addition, Clovertown’s
single-core performance of 0.17 GStencil/s (1.37 GFlop/s) grows only by 1.9×
when using all eight cores, resulting in aggregate node performance of only
0.32 GStencil/s (2.54 GFlop/s).

Clovertown’s poor multicore scaling indicates that the system rapidly be-
comes memory-bound. Given the snoopy coherency protocol overhead, it is
not too surprising that the performance only improves by 38% between the
four-core and eight-core experiment (when both FSBs are engaged), despite
the doubling of the peak aggregate FSB bandwidth.

For the 27-point stencil, shown in Figure 1.6, memory bandwidth is again
an issue at the higher core counts. When we run on 1 or 2 cores, cache bypass
is not helpful, while the CSE optimization produces speedups of at least 30%,
implying that the lower core counts are compute-bound. However, as we scale
to 4 and 8 cores, we observe a transition to being memory-bound. The cache
bypass instruction improves performance by at least 10%, while the effects of
CSE are negligible. This behavior is well explained by the different streaming
bandwidth ceilings on Clovertown’s Roofline model. The Roofline model also
predicts a performance upper bound of approximately 0.39 GStencil/s (11.8
GFlop/s), while we actually attained 0.32 GStencil/s (9.7 GFlop/s) — hence,
further tuning will have diminishing returns. All in all, full tuning for the
27-point stencil resulted in a 1.9× improvement using all 8 cores, as well as a
2.7× speedup when scaling from 1 to 8 cores.

1.7.4 Blue Gene/P Performance

Unlike the three previous architectures, the IBM Blue Gene/P implements
the PowerPC ISA. In addition, the xlc compiler does not generate or sup-
port cache bypass at this time. As a result, the best arithmetic intensity we
can achieve is 0.33 for the 7-point stencil and 1.25 for the 27-point stencil.
The performance of a Blue Gene/P node is an interesting departure from the
bandwidth-limited x86 architectures, as it seems to be compute-bound both
for the 7-point and 27-point stencils. As seen in Figure 1.5 and 1.6, in nei-
ther case do memory optimizations like padding, core blocking, or software

26 Scientific Computing with Multicore and Accelerators

prefetching make any noticeable difference. The only optimizations that help
performance are computation-related, like register blocking, SIMDization, and
CSE. After full tuning, both stencil kernels show perfect multicore scaling.

Interestingly, when we modified our stencil code generator to produce
SIMD intrinsics we observed very different results on the 7- and 27-point
stencils. We observe nearly a 30% increase in performance when using SIMD
intrinsics on the 7-point, but a 10% decrease in performance on the 27-point
CSE implementation using SIMD. One should note that unlike x86, Blue Gene
does not support an unaligned SIMD load. As such, to load an unaligned
stream of elements (and write to aligned), one must perform permutations
and asymptotically require two instructions for every two elements. Clearly
this is no better than a scalar implementation of one load per element.

If we look at the Roofline model in Figure 1.2, we would conclude both
stencils are likely compute-limited, although further optimization will quickly
make the 7-point memory-limited. After full tuning of the 7-point stencil, we
see an improvement of 4.4× at full concurrency. Similarly, for the 27-point
stencil, performance improves by a factor of 2.9× at full concurrency.

1.7.5 Victoria Falls Performance

Like the Blue Gene/P, the Victoria Falls does not exploit cache bypass.
Moreover, it is a highly multi-threaded architecture with low-associativity
caches. Initially, if we look at the performance of our reference 7-point sten-
cil implementation in Figure 1.5, we see that the we attain 0.16 GStencil/s
(1.29 GFlop/s) at 4 cores, but only 0.09 GStencil/s (0.70 GFlop/s) using
all 16 cores! Clearly the machine’s resources are not being utilized properly.
Now, as we begin to optimize, we find that properly-tuned padding improves
performance by 4.8× using 8 cores and 3.4× when employing all 16 cores.
The padding optimization produces much larger speedups on Victoria Falls
than for all previous architectures, primarily due to the low associativity of
its caches.The highly multithreaded nature of the architecture results in each
thread receiving only 64 KB of L2 cache. Consequently, core blocking also
becomes vital, and, as expected, produces large gains across all core counts.

A new optimization that we introduced specifically for Victoria Falls was
thread blocking. In the original implementation of the stencil code, each core
block is processed by only one thread. When the code is thread blocked,
threads are clustered into groups of 8; these groups work collectively on one
core block at a time. When thread blocked, we see a 3% performance improve-
ment with 8 cores and a 12% improvement when using all 16 cores. However,
the automated search to identify the best parameters was relatively lengthy,
since the parameter space is larger than conventional threading optimizations.

Finally, we also saw a small improvement when we performed a second
pass through our greedy algorithm. For the higher core counts, this improved
performance by about 0.025 GStencil/s (0.20 GFlop/s). Overall, the tuning

Auto-tuning Stencil Computations on Multicore and Accelerators 27

for the 7-point stencil resulted in a 8.7× speedup at maximum concurrency
and a 8.6× parallel speedup as we scale to 16 cores.

For the 27-point stencil, shown in Figure 1.6, the reference implementation
scales well. Nonetheless, auto-tuning was still able to achieve significantly bet-
ter results than the reference implementation alone. Many optimizations com-
bined together to improve performance, including array padding, core block-
ing, common subexpression elimination, and a second sweep of the greedy
algorithm. After full tuning, performance improved by 1.8× when using all 16
cores, and we also see parallel scaling of 13.1× when scaling to 16 cores. The
fact that we almost achieve linear scaling strongly hints that it is compute-
bound. This is confirmed by examining the Roofline model in Figure 1.2.

The Victoria Falls performance results are even more impressive consid-
ering that one must regiment 128 threads to perform one operation; this is 8
times as many as the Nehalem, 16 times more than either the Barcelona or
Clovertown, and 32 times more than the Blue Gene/P.

1.7.6 Cell Performance

The Cell blade is the first of two local store architectures discussed in
this study. Recall that generic microprocessor-targeted source code cannot
be näıvely compiled and executed on the SPE’s software controlled memory
hierarchy. Therefore, we use a local-store implementation as the baseline per-
formance for our analysis. It should be noted this baseline implementation
näıvely blocks the code for the local store. Our Cell-optimized version utilizes
an auto-tuned circular queue algorithm that searches for the optimal local
store and register blockings.

For both local store architectures, data movement to and from DRAM
is explicitly controlled through DMAs, so write allocation is neither needed
nor supported. Therefore, the ideal arithmetic intensity for the local store
architectures is 0.50 for the 7-point stencil and 1.88 for the 27-point stencil.
In practice, however, the Cell’s arithmetic intensity is significantly below this
ideal due to extra padding for the DMA operations.

Examining the behavior of the 7-point stencil on Cell (shown in Figure 1.5)
reveals that the system is clearly computationally bound for the baseline sten-
cil calculation when using 1 or 2 cores. In this region, there is a significant
performance advantage in using hand optimized SIMD code. However, at con-
currencies greater than 4 cores, there is essentially no advantage — the ma-
chine is clearly bandwidth-limited. The only useful optimization is NUMA-
aware data placement. Exhaustively searching for the optimal core blocking
provided no appreciable speedup over the näıve approach of maximizing local
store utilization. Although the resultant performance of 15.6 GFlop/s is a low
fraction of peak performance, it achieves about 90% of the streaming memory
bandwidth, as evidenced in Roofline model in Figure 1.2.

Unlike for the 7-point stencil, register blocking becomes useful for the 27-
point stencil (shown in Figure 1.6). As evidenced by the linear scaling across

28 Scientific Computing with Multicore and Accelerators

SPEs, this kernel is limited by computation until common subexpression elim-
ination is applied. After CSE is applied, it is compute-bound from 1 to 4 cores,
but likely bandwidth-bound when utilizing 8 cores on a single socket or all
16 cores across the SMP. Clearly, like the x86 version of gcc, the Cell version
of gcc is incapable of SIMDization or CSE. Overall, full tuning allowed us to
achieve a 4.8× speedup at full concurrency and an improvement of 9.9× when
scaling from 1 to 16 SPEs.

Although this Cell blade does not provide a significant performance advan-
tage over the previous incarnation for memory intensive codes, it provides a
tremendous productivity advantage by ensuring double-precision performance
is never the bottleneck — one only need focus on DMA and blocking.

1.7.7 GTX280 Performance

The NVIDIA GT200 GPU (GeForce GTX280) is our other local store
architecture. As an accelerator, the GTX280 links its address space to the
disjoint CPU address space via the PCIExpress bus. However, for this study,
we assume that the grids being operated on are already present in the local
GPU memory, thus ignoring the data transfer time from CPU memory. In
addition, our GTX280 27-point implementation only exploits a 24-flop CSE
implementation. The compiler further reduced the flop count to approximately
17 per stencil, so this platform is performing slightly more than half of the 30
flops typically performed by the non-CSE kernel on other machines.

For the 7-point and 27-point stencils, presented in Figures 1.5 and Fig-
ure 1.6, we manually select the appropriate decomposition and number of
threads. Unfortunately, the problem decomposes into a power-of-two number
of CUDA thread blocks which we must run on 30 streaming multiprocessors.
Clearly, when the number of CUDA thread blocks is less than 30, there is
a linear mapping without load imbalance. However, at 32 thread blocks the
load imbalance is maximal (two cores are tasked with twice as many blocks
as others). As concurrency increases beyond 32 thread blocks, load imbalance
diminishes and performance saturates at 4.56 GStencil/s (36.5 GFlop/s).

Our 27-point stencil implementation, shown in Figure 1.6, only exploits
CSE. The performance profile still looks similar to the 7-point stencil, how-
ever — performance monotonically increases as we scale from 1 to 1024
CUDA thread blocks, and at maximum concurrency we peak at 2.64 GStencil/s
(45.5 GFlop/s) — a compute-bound result.

1.7.8 Cross Platform Performance and Power Comparison

At ultra scale, power has become a severe impediment to increased perfor-
mance. Thus, in this section not only do we normalize performance compar-
isons by looking at entire nodes rather than cores, we also normalize perfor-
mance with power utilization. To that end, we use a power efficiency metric
defined as the ratio of sustained performance to sustained system power —

Auto-tuning Stencil Computations on Multicore and Accelerators 29

7pt Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
eh

al
em

B
ar

ce
lo

n
a

C
lo

ve
rt

o
w

n

B
lu

eG
en

e/
P

V
ic

to
ri
a

Fa
lls

C
el

l
B
la

d
e

G
T
X
2
8
0

G
S

te
n

ci
ls

/
s

27pt Performance

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

N
eh

al
em

B
ar

ce
lo

n
a

C
lo

ve
rt

o
w

n

B
lu

eG
en

e/
P

V
ic

to
ri
a

Fa
lls

C
el

l
B
la

d
e

G
T
X
2
8
0

G
S

te
n

ci
ls

/
s

auto-tuned reference
auto-tuned CSE

FIGURE 1.7: A performance comparison for all architectures at maximum
concurrency after full tuning. The left graph shows auto-tuned 7-point stencil
performance, while the right graph displays performance for the auto-tuned
27-point stencil with and without common subexpression elimination.

7pt Power Efficiency

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

N
eh

al
em

B
ar

ce
lo

n
a

C
lo

ve
rt

o
w

n

B
lu

eG
en

e/
P

V
ic

to
ri
a

Fa
lls

C
el

l
B
la

d
e

G
T
X
2
8
0

G
S

te
n

ci
ls

/
s/

k
W

27pt Power Efficiency

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
N

eh
al

em

B
ar

ce
lo

n
a

C
lo

ve
rt

o
w

n

B
lu

eG
en

e/
P

V
ic

to
ri
a

Fa
lls

C
el

l
B
la

d
e

G
T
X
2
8
0

G
S

te
n

ci
ls

/
s/

k
W

auto-tuned reference
auto-tuned CSE

FIGURE 1.8: A power efficiency comparison for all architectures at maxi-
mum concurrency after full tuning. The left graph shows auto-tuned 7-point
stencil power efficiency, while the right graph displays power efficiency for the
auto-tuned 27-point stencil with and without common subexpression elimina-
tion.

GStencil/s/kW. This is essentially the number of stencil operations one can
perform per Joule of energy.

Although manufactured by different companies, the evolution of x86 multi-
core chips from the Intel Clovertown, through the AMD Barcelona, and finally
to the Intel Nehalem is an intriguing one. The Clovertown is a UMA architec-
ture that uses an older front-side bus architecture and supports only a single
hardware thread per core. In terms of DRAM, it employs FBDIMMs running

30 Scientific Computing with Multicore and Accelerators

at a relatively slow 667 MHz. Consequently, it is not surprising to see in Fig-
ure 1.7 that the Clovertown is the slowest x86 architecture for either stencil.
In addition, due in part to the use of power-hungry FBDIMMs, it is also the
least power efficient x86 platform (as evidenced in Figure 1.8). The AMD
Barcelona has several significant upgrades over the Clovertown. It employs a
modern multisocket architecture, meaning that it is NUMA with integrated
on-chip memory controllers and an inter-chip network. It also uses standard
DDR2 DIMMs (half the power, two thirds the bandwidth). These features
allow for noticeably better effective memory bandwidth, resulting in a 2.7×
speedup for the 7-point stencil over Clovertown. The 27-point stencil, which
is less likely to be constrained by memory, still produces a 1.9× speedup over
the Clovertown (with CSE). As previously mentioned, Intel’s new Nehalem
improves on previous x86 architectures in several ways. Notably, Nehalem
features an integrated on-chip memory controller, the QuickPath inter-chip
network, and simultaneous multithreading (SMT). It also uses three channels
of DDR3 DIMMs running at 1066 MHz. These enhancements are reflected
in the bandwidth-intensive 7-point stencil performance, which is 6.2× better
than Clovertown and 2.3× better than Barcelona. On the compute-intensive
27-point stencil (with CSE), we still see a 3.7× improvement over Clovertown
and a 2.0× speedup over Barcelona.

The IBM Blue Gene/P was designed for large-scale parallelism, and one
consequence is that it is tailored for power efficiency rather than performance.
This trend is starkly laid out in Figures 1.7 and 1.8. For both stencil kernels,
the Blue Gene/P delivered the lowest performance per SMP among all archi-
tectures. Despite this, it attained the best power efficiency among the cache-
based processors, and even bested Cell on the 7-point. It should be noted that
Blue Gene/P is two process technology generations behind Nehalem.

Victoria Falls’ chip multithreading (CMT) mandates one exploit 128-way
parallelism. We see that Victoria Falls achieves performance close to that of
Barcelona, but certainly better than either Clovertown or Blue Gene/P. How-
ever, in terms of power efficiency, it is second to last, besting only Clovertown
— no surprise given they both use power-inefficient FBDIMMs.

Finally, the STI Cell blade and NVIDIA’s GTX280 GPU are the two local-
store architectures that we studied. They are different from the cache-based
architectures in two important ways. First, they are both heterogeneous; the
Cell has a PowerPC core as well as 8 SIMD SPE units per socket, while the
GTX280 is an accelerator that links to a disjoint CPU. For this study, we
did not exploit heterogenity. All the computation for the Cell was conducted
on the SPEs, and all the computation on the GTX280 system was performed
on the GPU. Second, they employ different programming models that render
our portable C code useless; the Cell’s SPEs require DMA operations to move
data between main memory and each SPE’s local store, while the GTX280
uses the CUDA programming language. Nonetheless, the potential produc-
tivity loss may be justified by the performance and power efficiency numbers
attained using these two architectures. We see that Cell’s performance is at

Auto-tuning Stencil Computations on Multicore and Accelerators 31

least as good as any of the cache-based processors, while the GTX280’s perfor-
mance is at least twice as good. Moreover, the power efficiency of both these
architectures is significantly better than any of the cache-based architectures
on the 27-point stencil. Nevertheless, it is important to note that neither the
data transfer time between CPU and GPU, nor any impacts from Amdahl’s
law [3] were included in our performance results.

1.8 Conclusions

In this work, we examined the application of auto-tuning to the 7- and
27-point stencils on the widest range of multicore architectures explored in
the literature. The chip multiprocessors examined in our study lie at the
extremes of a spectrum of design trade-offs that range from replication of
existing core technology (multicore) to employing large numbers of simpler
cores (manycore) and novel memory hierarchies (streaming and local-store).
Results demonstrate that parallelism discovery is only a small part of the
performance challenge. Of equal importance is selecting from various forms
of hardware parallelism and enabling memory hierarchy optimizations, made
more challenging by the separate address spaces, software-managed memory
local stores, and NUMA features that appear in multicore systems today.

Our work leverages the use of auto-tuners to enable portable, effective
optimization across a broad variety of chip multiprocessor architectures, and
successfully achieves the fastest multicore stencil performance to date. Anal-
ysis shows that every optimization was useful on at least one architecture
(Figures 1.5 and 1.6), highlighting the importance of optimization within an
auto-tuning framework. A key contribution to our study is the Roofline model,
which effectively provides a visual assessment of potential performance and
bottlenecks for each architectural design. Using this model allowed us to ac-
cess the impact of our auto-tuning methodology, and determine that over-
all performance was generally close to its practical limit. Clearly, among the
cache-based architectures, auto-tuning was essential in providing substantial
speedups for both numerical kernels regardless of whether the computational
balance ultimately became memory or compute-bound; on the other hand,
the reference implementation often showed no (or even negative) scalability.

Overall results show substantial benefit in raw performance and power
efficiency for novel architectural designs, which use a larger number of sim-
pler cores and employing software controlled memories (Cell and GTX280).
However, the software control of local-store architectures results in a difficult
trade-off, since it gains performance and power efficiency at a significant cost
to programming productivity. Conversely the cache-based CPU architectures
offer a well-understood and more productive programming paradigm. Results
show that Nehalem delivered the best performance of any of the cache-based

32 Scientific Computing with Multicore and Accelerators

systems, achieving more than 2× improvement versus Barcelona, and more
than a 6× speedup compared the previous generation Intel Clovertown —
due, in-part, to the elimination of the front-side bus in favor of on-chip mem-
ory controllers. However, the low-power BG/P design offered one of the most
attractive power efficiencies in our study, despite its poor single node perfor-
mance; this highlights the importance of considering these design tradeoffs in
an ultrascale, power intensive environment. Due to the complexity of reuse
patterns endemic to stencil calculations coupled with relatively small per-
thread cache capacities, Victoria Falls was perhaps the most difficult machine
to optimize — it needed virtually every optimization.

Now that power has become the primary impediment to future processor
performance improvements, the definition of architectural efficiency is migrat-
ing from a notion of “sustained performance” towards a notion of “sustained
performance per watt.” Furthermore, the shift to multicore design reflects a
more general trend in which software is increasingly responsible for perfor-
mance as hardware becomes more diverse. As a result, architectural compar-
isons should combine performance, algorithmic variations, productivity (at
least measured by code generation and optimization challenges), and power
considerations. We believe that our work represents a template of the kind of
architectural evaluations that are necessary to gain insight into the tradeoffs
of current and future multicore designs.

1.9 Acknowledgments

The authors acknowledge Georgia Institute of Technology, its Sony-
Toshiba-IBM Center of Competence, and the National Science Foundation for
the use of Cell resources. We would like to express our gratitude to Sun and
NVIDIA for their machine donations. We also thank the Argonne Leadership
Computing Facility for use of their Blue Gene/P cluster. ANL is supported
by the Office of Science of the U.S. Department of Energy under contract DE-
AC02-06CH11357. This work and its authors are supported by the Director,
Office of Science, of the U.S. Department of Energy under contract number
DE-AC02-05CH11231 and by NSF contract CNS-0325873. Finally, we express
our gratitude to Microsoft, Intel, and U.C. Discovery for providing funding
(under Awards #024263, #024894, and #DIG07-10227, respectively) and for
the Nehalem computer used in this study.

Bibliography

[1] Software Optimization Guide for AMD Family 10h Processors, May 2007.

[2] AMD64 Architecture Programmers Manual Volume 2: System Program-
ming, September 2007.

[3] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS ’67 (Spring): Proceedings of
the April 18-20, 1967, spring joint computer conference, pages 483–485,
New York, NY, USA, 1967. ACM.

[4] Kevin Barker, Kei Davis, Adolfy Hoisie, Darren Kerbyson, Michael Lang,
Scott Pakin, and Jose Carlos Sancho. Entering the Petaflop Era: The
Architecture and Performance of Roadrunner. In SC ’08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, Piscataway, NJ,
USA, 2008. IEEE Press.

[5] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53:484–512,
1984.

[6] Kaushik Datta. Auto-tuning Stencil Codes for Cache-Based Multicore
Platforms. PhD thesis, EECS Department, University of California,
Berkeley, Dec 2009.

[7] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick.
Stencil Computation Optimization and Auto-Tuning on State-of-the-art
Multicore Architectures. In SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008.
IEEE Press.

[8] J. Doweck. Inside intel core microarchitecture. In HotChips 18, 2006.

[9] B. Flachs, S. Asano, S.H. Dhong, et al. A streaming processor unit for a
cell processor. ISSCC Dig. Tech. Papers, pages 134–135, February 2005.

[10] M. Gschwind. Chip Multiprocessing and the Cell Broadband Engine. In
CF’06: Proceedings of the 3rd conference on Computing frontiers, pages
1–8, New York, NY, USA, 2006.

33

34 Scientific Computing with Multicore and Accelerators

[11] M. Gschwind, H. P. Hofstee, B. K. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki. Synergistic Processing in Cell’s Multicore Architecture.
IEEE Micro, 26(2):10–24, 2006.

[12] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches.
IEEE Trans. Comput., 38(12):1612–1630, 1989.

[13] Intel64 and IA-32 Architectures Optimization Reference Manual, May
2007.

[14] Intel 64 and IA-32 Architectures Software Developer’s Manual, Septem-
ber 2008.

[15] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shi ppy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

[16] S. Kamil, K. Datta, S. Williams, L. Oliker, John Shalf, and K. Yelick. Im-
plicit and explicit optimizations for stencil computations. In ACM SIG-
PLAN Workshop Memory Systems Performance and Correctness, San
Jose, CA, 2006.

[17] S. Kamil, P. Husbands, L. Oliker, John Shalf, and K. Yelick. Impact of
modern memory subsystems on cache optimizations for stencil compu-
tations. In 3rd Annual ACM SIGPLAN Workshop on Memory Systems
Performance, Chicago,IL, 2005.

[18] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. Quantitative System Performance: Computer System Analysis
using Queueing Network Models. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1984.

[19] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, June 2001.

[20] D. Pham, S. Asano, M. Bollier, et al. The design and implementation of a
first-generation cell processor. ISSCC Dig. Tech. Papers, pages 184–185,
February 2005.

[21] S. Phillips. Victoria falls: Scaling highly-threaded processor cores. In
HotChips 19, 2007.

[22] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computa-
tions. In Proceedings of SC’00, Dallas, TX, November 2000. Supercom-
puting 2000.

Auto-tuning Stencil Computations on Multicore and Accelerators 35

[23] S. Sellappa and S. Chatterjee. Cache-efficient multigrid algorithms.
International Journal of High Performance Computing Applications,
18(1):115–133, 2004.

[24] The SPARC Architecture Manual Version 9, 1994.

[25] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically
tuned sparse matrix kernels. In Proc. of SciDAC 2005, J. of Physics:
Conference Series. Institute of Physics Publishing, June 2005.

[26] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Opti-
mization of Software and the ATLAS project. Parallel Computing, 27(1-
2):3–35, 2001.

[27] S. Williams. Auto-tuning Performance on Multicore Computers. PhD
thesis, EECS Department, University of California, Berkeley, December
2008.

[28] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice Boltz-
mann simulation optimization on leading multicore platforms. In In-
terational Conference on Parallel and Distributed Computing Systems
(IPDPS), Miami, Florida, 2008.

[29] S. Williams, D. Patterson, L. Oliker, J. Shalf, and K. Yelick. The roofline
model: A pedagogical tool for auto-tuning kernels on multicore archi-
tectures. In IEEE HotChips Symposium on High-Performance Chips
(HotChips 2008), August 2008.

[30] S. Williams, A. Watterman, and D. Patterson. Roofline: An insightful
visual performance model for floating-point programs and multicore ar-
chitectures. Communications of the ACM, April 2009.

